本書初版第1刷におきまして、一部誤りがあり、下記のように訂正させていただきます。 読者のみなさまには大変ご迷惑をお掛けし、誠に申し訳ございません。

	ページ	箇所	誤	正
本冊	p50	要点のまとめ 数列の収束 最初の式	$\lim_{x\to\infty}a_n$	$\lim_{\substack{n \to \infty}} a_n$
		要点のまとめ 数列の発散① 最初の式	$\lim_{x \to \infty} a_n$	$\lim_{n\to\infty} a_n$
		要点のまとめ 数列の発散② 最初の式	$\lim_{x\to\infty}a_n$	$\lim_{n\to\infty} a_n$
	p61	1 xy 平面における図形 ②領域を表す 本文1行目	①の直線L を	①の直線Łを
		2 点と直線の距離の公式	$d = \frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}}$	$d = \frac{ ax_0 + by_0 + c }{\sqrt{a^2 + b^2}}$
	p69	間4 1行目		3 点A(2,1), B(3,3), C(4,2)
		脚注 答え:問3	(4,3), (-4,3)	(4,-3), (-4,3)
	p88	4 下から2行目の式の末尾	$n(n-\square)+2m\pi$	$n(n-\boxed{1})\pi + 2m\pi$
	p94	2 2行目	$(0 \le \theta \le 2\pi)$	$(0 \le \theta < 2\pi)$
	p126	3 下から5行目の式の末尾	$\boxed{QR} \sin^2 \frac{2}{3} t$	$QR \sin^2 \frac{3}{2}t$
別冊	p45	(2) 6行目の式の右辺	$ \beta - \alpha 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$	$ \beta - \alpha 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} $
	p66	解答 3 2行目	A 3	(1) A 3
		解答 3 下から2行目	F 4	(2) F 4